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Abstract
Spectral properties of a coupled N × N potential model obtained with the help
of a single non-conservative supersymmetric (SUSY) transformation starting
from a system of N radial Schrödinger equations with the zero potential and
finite threshold differences between the channels are studied. The structure
of the system of polynomial equations which determine the zeros of the Jost-
matrix determinant is analyzed. In particular, we show that the Jost-matrix
determinant has N2N−1 zeros which may all correspond to virtual states. The
number of bound states satisfies 0 � nb � N . The maximal number of
resonances is nr = (N −1)2N−2. A perturbation technique for a small coupling
approximation is developed. A detailed study of the inverse spectral problem
is given for the 2 × 2 case.

PACS numbers: 03.65.Nk, 24.10.Eq

1. Introduction

Almost all low-energy collisions of microparticles with an internal structure (i.e., atom–atom,
nucleus–nucleus, etc) include inelastic processes such as excitations of internal degrees of
freedom of colliding particles or processes with rearrangements of their constituent parts.
These processes can be described by a matrix (more precisely multichannel) Schrödinger
equation with a local matrix potential [1, 2]. One may be interested in both direct and inverse
scattering problems for this equation. The method of SUSY transformations is known as a
powerful tool for solving both types of problems for a single-channel Schrödinger equation
[3]. Nowadays, the first attempt to generalize the method for a coupled-channel Schrödinger
equation with different thresholds is given in [4, 5]. This attempt is based on a non-conservative
SUSY transformation (contrary to [6, 7]), i.e. a SUSY transformation that does not preserve a

3 Boursier de l’ULB.

1751-8113/08/175209+17$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/17/175209
mailto:pupasov@phys.tsu.ru
mailto:samsonov@phys.tsu.ru
mailto:jmspar@ulb.ac.be
http://stacks.iop.org/ JPhysA/41/175209


J. Phys. A: Math. Theor. 41 (2008) 175209 A M Pupasov et al

boundary behavior of solutions. The main advantage of such transformations is a possibility
to obtain multichannel potentials with a non-trivial coupling starting from the zero potential.

The present work is aimed at the investigation of spectral properties of these SUSY
potentials. Our approach is based on an analysis of the Jost matrix. In the non-relativistic
scattering theory, the Jost matrix plays a fundamental role similar to the scattering matrix.
The zeros of the Jost-matrix determinant define positions of the bound/virtual states and
resonances [1, 2]. Therefore, studying the zeros of the Jost-matrix determinant allows one to
analyze the spectrum of the model. A closed analytical expression of the Jost matrix, as well
as potential, resulting from a non-conservative SUSY transformation of the zero potential is
obtained in [4]. The analysis of spectral properties for such potentials has not been presented
up to now despite the fact that the Jost matrix is well known [8]. This may be explained by the
fact that the spectrum of the potential after a non-conservative SUSY transformation changes
essentially and to find these changes one has to find all the zeros of the Jost-matrix determinant.
More precisely, no spectral point of the initial Hamiltonian belongs to the spectrum of the
transformed Hamiltonian. As a result, a supersymmetry algebra, which is always present in
the case of conservative SUSY transformations, cannot actually be constructed here and the
word ‘SUSY transformation’ is only a formal heritage from the previous conservative case
[6, 7].

The principal point of this paper is to show that the qualitative behavior of the spectrum
of (non-conservative) SUSY partners of the vanishing multichannel potential with threshold
differences may be studied for an arbitrary number of channels, N. We think this is a very strong
result, since even for the case N = 2 the full analysis of the spectrum is a very complicated
problem [8, 10, 11]. The main reason for this is an extremely rapid growth of the order of an
algebraic equation defining the spectrum with the growth of the number of channels.

The paper is organized as follows. We start with preliminaries, where we give basic
definitions and equations. Section 3 is devoted to the analysis of the number of bound states
resulting from a non-conservative SUSY transformation of the zero potential as a function of
the parameters defining the transformation. This analysis is based on the study of the properties
of the eigenvalues of the Jost matrix. Following similar lines we analyze the possible number
of virtual states in section 4. Once the bound and virtual states are analyzed we can formulate
the conditions under which resonances may appear; this is made in section 5. The behavior
of the Jost-matrix determinant zeros is studied in section 6 in the approximation of a weak
coupling between channels. In section 7 we deal with the particular two-channel case. In
this case, we express parameters of the potential in terms of the zeros of the Jost-matrix
determinant, i.e. solve an inverse spectral problem. The main results are summarized in the
conclusion.

2. Preliminaries

Let us first summarize the notations used below for coupled-channel scattering theory [1, 2, 9].
We consider a system of coupled radial Schrödinger equations for the s-waves that in reduced
units read

Hψ(k, r) = K2ψ(k, r), r ∈ (0,∞), (1)

with

H = −1
d2

dr2
+ V (r), (2)

where r is the radial coordinate, V (r) is an N × N real symmetric matrix, 1 is the unit matrix
and ψ may be either a matrix-valued or a vector-valued solution. By k we denote a point in
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the space C
N, k = {k1, . . . , kN } , ki ∈ C. A diagonal matrix with non-vanishing entries ki is

written as K = diag(k) = diag(k1, . . . , kN). The complex wave numbers ki are related to the
center-of-mass energy E and the channel thresholds �1, . . . ,�N , which are supposed to be
different from each other, �i(�=j) �= �j , by

k2
j = E − �j, �1 = 0. (3)

We assume here that �1 = 0 and the different channels have equal reduced masses, a case to
which the general situation can always be formally reduced [2].

Let us recall basic definitions from SUSY quantum mechanics [3–7]. It is known that
the solutions of the initial Schrödinger equation (1) may be mapped into the solutions of the
transformed equation with the help of the differential-matrix operator

ψ̃(k, r) = Lψ(k, r) =
[
−1

d

dr
+ U(r)

]
ψ(k, r). (4)

The transformed Schrödinger equation has form (1) with a new potential

Ṽ (r) = V (r) − 2U ′(r). (5)

The matrix U is called superpotential

U(r) = η′(r)η−1(r), (6)

and expressed in terms of a matrix solution η of the initial Schrödinger equation

Hη(r) = −K2η(r), (7)

where K = diag(κ) = diag(κ1, . . . , κN) is a diagonal matrix called the factorization wave
number, which corresponds to an energy E lying below all thresholds, called the factorization
energy. The entries of K, thus, satisfy E = −κ2

i +�i ; by convention, we choose them positive:
κi > 0. The solution η is called the factorization solution.

In the case of the zero potential V = 0, η contains only exponentials

η(r) = cosh(Kr) + K−1 sinh(Kr)U0. (8)

The symmetric matrix U0 is the superpotential at r = 0, which can be chosen arbitrarily. It
is convenient to introduce special notations αj for the diagonal and βjl for the off-diagonal
entries of U0.

The Jost matrix of a (non-conservative) SUSY partner of the N-channel zero potential
reads [4]

F(k) = (K − iK)−1(U0 − iK), (9)

which is also the Jost matrix obtained in [8].
The necessary and sufficient condition on the parameters (factorization energy E and

superpotential at the origin U0) to get a potential without singularity at finite distances is
obtained in [10, 11]. This condition is the positive definiteness of the matrix K + U0:

K + U0 > 0, (10)

which puts some upper limit on the factorization energy E at a fixed U0.
The zeros of the Jost-matrix determinant define positions of the bound/virtual states and

the resonances. Thus, to find these positions we have to solve the following equation:

det F(k) = 0, (11)

taking into account the threshold conditions (3). According to (9), the roots of equation (11)
are defined by the roots of

det B(k) = 0, κj − ikj �= 0, j = 1, . . . , N, (12)
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where

B(k) = U0 − iK. (13)

In what follows, we concentrate on the analysis of the zeros of det B only keeping in mind
that some of them may be canceled in det F if kj = −iκj . Our starting point is thus a system
of algebraic equations (12) and (3) which reads, with certain coefficients a

j

i ,

(−i)Nk1k2 · · · kN +
N∑

j=1

a
j

N−1

N∏
l=1,l �=j

kl + · · · +
N∑

j=1

a
j

1kj + a0 = 0, (14)

k2
j − k2

1 + �j = 0. (15)

First, we show that system (14), (15) can be reduced to an algebraic equation of the
N2N−1 degree with respect to one momentum, say k1, only. Indeed, any momentum enters
equation (14) only linearly. Therefore, it can be rewritten in the form

kNP1(k1, . . . , kN−1) = Q1(k1, . . . , kN−1), (16)

where P1(k1, . . . , kN−1) and Q1(k1, . . . , kN−1) are the polynomials of first degree in each of
the variables k1, . . . , kN−1. It is important to note that given all momenta k1, . . . , kN−1 this
equation defines kN in a unique way if P1 does not vanish. On the other hand, we can square the
left- and right-hand sides of (16) thus obtaining an equation where kN enters only in the second
degree and polynomials P 2

1 and Q2
1 are polynomials of the second degree with respect to their

variables. But in the equation thus obtained using threshold condition (15), we can replace all
second powers of the variables kj , j = 2, . . . , N by k2

1 −�j , which makes disappear both the
variable kN and the second power of kj , j = 2, . . . , N − 1, from the resulting equation and
raises the power of k1 till 2N . We thus see that after these manipulations the variable kN−1

enters in the resulting equation only in the first degree and the equation can be rewritten in
form (16)

kN−1P2(k1, . . . , kN−2) = Q2(k1, . . . , kN−2), (17)

where P2(k1, . . . , kN−2) and Q2(k1, . . . , kN−2) are polynomials of the first degree in each of
the variables k2, . . . , kN−2. From (17), given k1, . . . , kN−2, not a zero of PN−2, we obtain kN−1

in a unique way. We note that system (17), (16) and (15), where from (15) the last equation
k2
N − k2

1 + �N = 0 should be excluded, is equivalent to the original system (14), (15).
It is clear that we can repeat the above process N − 3 times more to get an equation

k2PN−1(k1) = QN−1(k1), (18)

and finally

PN(k1) = 0 (19)

with PN of the order N2N−1. Note that the subscript in Pk and Qk indicates nothing but the
step in this procedure. It is evident that any k1 which (together with k2, . . . , kN ) solves system
(14), (15) is a root of (19). The converse is also true. Indeed, given a root k1 of (19), but not
a root of PN−1, we find from (18) a unique k2. Once we know k1 and k2, we find k3 from the
equation previous to (18) and so on till kN which is found from (16). It is also clear that in this
way we can get N2N−1 number of sets k1, . . . , kN (some of them may coincide) each of which
solves system (14), (15) so that the same number N2N−1 is the number of possible solutions
of this system and system (19), (18), . . . , (16) is equivalent to the initial system (14), (15).
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3. The number of bound states

In the following, except for sections 6 and 7, we will consider all quantities as the functions of
the momentum k1. Other momenta are expressed in terms of k1 from the threshold conditions
(3). Since in this section we are interested in the number of bound states, we will consider only
the negative energy semi-axis E ∈ (−∞, 0). It happens to be useful to change the variables
kj in favor of k̄j as kj = ik̄j and rewrite the threshold conditions (15) accordingly

k̄j =
√

k̄2
1 + �j, (20)

where we have chosen only the positive value of the square root since in this section we
analyze only the point spectrum of H, which restricts all momenta kj to be purely imaginary
with a positive imaginary part so that k̄j = |kj |.

From (9) it is clear that all the zeros of det F are at the same time the zeros of the
determinant of the matrix B (13) and vice versa. This follows from (12) and the positive
definiteness of the matrix K − iK in the momenta region we consider so that neither of the
roots of det B solves the equation det(K − iK) = 0.

Since det B = ∏N
j=1 λj , where λj are the eigenvalues of B,

B(k̄1)xj (k̄1) = λj (k̄1)xj (k̄1), (21)

the equation det B(k̄1) = 0 is equivalent to λj (k̄1) = 0, j = 1, . . . , N . The matrix B
is symmetric with real entries in the momenta region we consider, B = U0 + K̄ = BT ,
which implies the reality of both λj (k̄1) and xj (k̄1). Here we introduced a diagonal matrix
K̄ = |K| = diag(k̄1, . . . , k̄N ).

Another property of λj (k̄1) important for the analysis is their monotony as functions of
k̄1 that we prove below.

For a fixed K̄ let us consider a deviation of λj (k̄1) for a small increment of the argument
k̄1, i.e. λj (k̄1 + δk̄1) = λj (k̄1) + δλj (k̄1) assuming δK̄ = diag(δk̄1, . . . , δk̄N ) real, positive
definite (since δk̄j > 0,∀j ) and infinitesimal. From (21) one gets

B(k̄1 + δk̄1)xj (k̄1 + δk̄1) = λj (k̄1 + δk̄1)xj (k̄1 + δk̄1). (22)

Here according to (13) B(k̄1 + δk̄1) = U0 + K̄ + δK̄ , and the increment of B(k̄1) is just
δB = δK̄ which plays the role of a small perturbation of B(k̄1). Therefore, we may calculate
the shifting of the eigenvalues produced by such a perturbation using a (Rayleigh–Schrödinger)
perturbation theory. Thus, for a non-degenerate eigenvalue λj , the first-order correction reads

δλj = 〈xj |δB|xj 〉 > 0, (23)

where the inequality follows from the positive definiteness of δB = δK̄ , which in turn implies
monotony of the eigenvalues as the functions of the momenta k̄1. For a degenerate eigenvalue,
corrections are obtained by diagonalizing the same perturbation operator δB restricted to a
linear span of unperturbed eigenvectors corresponding to a given eigenvalue, which still leads
to positive corrections because of positive definiteness of δB.

From here it follows that any eigenvalue λj (k̄1) may vanish, i.e. change its sign, only
once. Moreover, λj → k̄j > 0 as k̄1 → ∞. Hence, the number of negative eigenvalues
of B at k̄1 = 0, i.e. at the energy of the lowest threshold, is just the number of bound
states. Thus, to count the number of bound states, nb, one has to consider the eigenvalues
λj (k̄1), j = 1, . . . , N , of the matrix B(k̄1) at k̄1 = 0,

B(0) ≡ U0 − i diag(i
√

�j) = U0 + diag(
√

�j), (24)
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Figure 1. Typical behavior of the B-matrix eigenvalues, N = 3. The case of two bound states
with energies E1 = −51.8611 and E2 = −8.8852 is presented. The black squares show positions
of these bound states. The corresponding parameters are α1 = −3, α2 = −8, α3 = −1, β12 =
0.5, β13 = 0.4, β23 = 1, �2 = 15 and �3 = 25.

so that

nb = 1

2
(N − 	), 	 =

N∑
j=1

	j, 	j = λj (0)

|λj (0)| . (25)

To clarify this formula, we note that in the absence of bound states all 	j = 1,	 = N so that
nb = 0. Every bound state is responsible for the change of the sign of only one eigenvalue
from positive to negative thus raising −	 by two units, i.e. −	 → −	 + 2 with nb → nb + 1.
This justifies the factor 1/2 in (25).

Summarizing, we see that the number of bound states is bounded by 0 � nb � N .
Figure 1 shows the eigenvalues of the matrix B as the functions of k̄1 for the case N = 3. Two
eigenvalues cross the axis which corresponds to the case of nb = 2. The last comment in this
section is devoted to equation (10). Now it can be seen that the factorization energy should be
chosen lower than the ground-state energy for the transformed potential, E < Eg , if any.

4. The number of virtual states

According to the definition of a virtual state [1, 2], in this section we will need to consider the
channel wave numbers kj lying both in the positive and the negative imaginary semi-axes of
the corresponding momenta complex planes and consider the full imaginary axis for k1, i.e.
k̄1 ∈ (−∞,∞). The other momenta, k2, . . . , kN , belong to either the positive or the negative
parts of their imaginary axes in agreement with the threshold conditions

k̄j = σj

√
k̄2

1 + �j, σj = ±, j = 2, . . . , N. (26)

Since in (26) all combinations of signs are now possible it is convenient to introduce
special notations for these combinations. Denote σ = (+,±, . . . ,±) a string of N signs with
σj being its j th entry, which corresponds to the sign in (26) for the j th momentum for j > 1.
The first symbol ‘+’ in σ indicates that all the momenta k̄j are expressed in terms of k̄1. Let
n+(σ ) + 1 and n−(σ ) be the numbers of ‘+’ and ‘−’ signs in this string. We note the following

6
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evident combinatoric properties of n−(σ ) and n+(σ ). First, n+(σ ) + n−(σ ) + 1 = N which
implies ∑

σ

[n+(σ ) + n−(σ ) + 1] = N2N−1. (27)

Here and in what follows the summation over σ includes all 2N−1 possible sign combinations.
Next, a symmetry between ‘+’ and ‘−’ leads to the following relation:∑

σ

n−(σ ) =
∑

σ

n+(σ ) = (N − 1)2N−2. (28)

According to (13) every sign combination leads to its own B matrix defined by the
corresponding K matrix so that both K and B should carry an additional information about this
combination. Therefore,

Bσ = U0 + K̄σ , K̄σ = diag(k̄1, σ2k̄2, . . . , σN k̄N) (29)

and we denote λσ
j (k̄1), j = 1, . . . , N the eigenvalues of Bσ .

In order to find the zeros of the Jost-matrix determinant corresponding to the virtual states,
we should find the purely real solutions of the equations λσ

j (k̄1) = 0, j = 1, . . . , N , for all
2N−1 matrices Bσ . Although k̄j ’s are real, but bearing in mind our replacement kj = ik̄j ,
throughout the text we call these zeros purely imaginary. Finally, we note that since the matrix
K− iK in (9) is not positive definite for an arbitrary σ anymore, in some particular cases some
of the zeros of B may be canceled by the zeros of det(K − iK) and will not correspond to
virtual states. Nevertheless, omitting these particular cases, we will concentrate on an analysis
of the zeros of det B only.

The eigenvalues λσ
j (k̄1) are monotonous functions of k̄1 in two cases only: (i) σ =

(+, +, . . . , +) and k̄1 > 0; (ii) σ = (+,−, . . . ,−) and k̄1 < 0. In general, an eigenvalue
λσ

j (k̄1) may have minima/maxima for k̄1 ≶ 0 which may lead to two or even more roots in
the equation λσ

j (k̄1) = 0. We illustrate this behavior for N = 3 in figure 2. The monotonous
lines in the right/left part of figure 2(a)/(c) correspond to the case (i)/(ii). The position of the
zeros of the eigenvalues is shown by stars, squares and circles. It is clearly seen that the total
number of roots of all equations λσ

j (k̄1) = 0 is (N2N−1)|N=3 = 12 which all correspond to
virtual states.

A change of parameters may result in shifting the position of the virtual states only without
changing the number of zeros (i.e. virtual states). For instance, in the simplest case we may
shift all diagonal entries of U0 by a number λ0, U0 → U0 + λ0I , thus shifting all eigenvalues
of B by the same number, λσ

j (k̄1) → λσ
j (k̄1) + λ0.

Let us consider a specific eigenvalue defined by a string σ0, with a local maximum at
k̄1 = k̄1,max, λ

σ0
j (k̄1,max) = λj,max. One can always shift all the eigenvalues by the value λj,max

such that the curve λ
σ0
j (k̄1) touches the k̄1 axis at the point k̄1 = k̄1,max, meaning that k̄1,max

not only becomes a root of the equation λ
σ0
j (k̄1) = 0 but this root is a multiple (of multiplicity

2), and by a small additional change of other parameters it can be split into two simple but
complex roots. This is just in this way two virtual states collapse producing a resonance; a
subject which deserves a special discussion (see the following section). Pairs of virtual states
which may collapse are shown in figure 2 by squares and circles.

It is not difficult to convince oneself that for any given βjl the situation when all the zeros
of the Jost-matrix determinant are purely imaginary may be realized by a proper choice of
αj . To see that let us consider the asymptotic behavior of λσ

j for |k̄1| → ∞, when all the
off-diagonal entries of B become negligibly small,

λσ
1 
 k̄1 + α1, (30)

7
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(a) (b)

(c) (d )

Figure 2. Typical behavior of the eigenvalues λσ
j (k̄1), N = 3, is shown. Each plane corresponds

to a particular choice of string σ : (a) σ = (+ + +), (b) σ = (+ + −), (c) σ = (+ − −) and
(d) σ = (+ − +). Stars, squares and circles correspond to the virtual states. Virtual states are
denoted by the identical symbol if they belong to the same eigenvalue λσ

j (k̄1). The corresponding
parameters are α1 = 3, α2 = 5, α3 = 9, β12 = 0.5, β13 = 0.4, β23 = 0.2,�2 = 15 and �3 = 35.

λσ
j 
 σj

√
k̄2

1 + �j + αj = σj

(
|k̄1| +

�j

2k̄1
+ · · ·

)
+ αj , (31)

|k̄1| → ∞. (32)

The numbers n+(σ ) and n−(σ ) determine the corresponding numbers of increasing and
decreasing eigenvalues at positive infinity. The eigenvalue λσ

1 increases both at negative and
positive infinity. Now if we choose all αj sufficiently large in absolute values and negative, we
can always guarantee the location of a root of the equation λσ

1 (k̄1) = 0 near the point k̄1 = α1

and at the same time the location of two roots of the equation λσ
j (k̄1) = 0 with corresponding

σj = + near the points k̄1 = ±αj . Thus, for each σ we can obtain 2n+(σ ) + 1 zeros. The total
number, nv , of these zeros may be calculated by formulae (27) and (28)

nv =
∑

σ

[2n+(σ ) + 1] = N2N−1, (33)

which coincides with the total number of all the possible roots of system (14), (15) and is just
the maximal possible number of virtual states. Hence, in this case all the roots are purely
imaginary. In the following section, we consider the case when some of the zeros may merge,
become complex and produce resonances.

5. The number of resonances

For simplicity, independently of whether or not it can be seen in a scattering we call any pair of
complex zeros k = ±kr + iki of the Jost-matrix determinant a resonance keeping in mind that
to be really visible in a scattering the resonance behavior of the corresponding cross section
should be narrow and sharp enough.

8
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Conservation of the number of zeros of an nth-order algebraic equation under a variation
of parameters included in its coefficients, which keeps unchanged its order (in our case this
is equation (19) obtained from system (14), (15)) applied to our case leads to the following
relation nb + nv + 2nr = N2N−1, where nb, nv and nr are the number of bound states, virtual
states and resonances, respectively. The aim of this section is to establish the maximal
number of possible resonances accepted by a non-conservative SUSY partner of the vanishing
potential.

Evidently, the maximal number of resonances corresponds to the minimal number of
bound nb and virtual nv states. These numbers would both become zero if none of the B
matrix eigenvalues intersected the k̄1 axis. But as was noted in the previous section, there
always exists an eigenvalue λσ

1 with the asymptotic behavior given in (30), i.e. ranging from
−∞ to +∞ and, hence, it intersects the k̄1 axis always and for all possible values of σ . We thus
see that the minimal number of real zeros that all eigenvalues may take is achieved if all the
eigenvalues λσ

j (k̄1), j > 1, are nodeless and curves λσ
1 (k̄1) intersect the k̄1 axis only once for

every given sign combination σ . To realize this case, we should choose the parameters included
in U0 in such a way that the global minimum λσ

j,min of every eigenvalue λσ
j (k̄1) with σj = +

(they tend to +∞ when |k̄1| → ∞) be positive λσ
j,min > 0 and, respectively, global maximum

λσ
j,max of every eigenvalue λσ

j (k̄1) with σj = − (they tend to −∞ when |k̄1| → ∞) be negative
λσ

j,max < 0. Under these conditions only the eigenvalues λσ
1 (k̄1) have zeros. The possibility

that these eigenvalues have only one zero can always be realized. This can be demonstrated
for small enough values of βij (so-called weak coupling approximation, see the following
section) which in the limit βij = 0 for all i, j gives a very simple behavior of the eigenvalues.
For instance, for �j+1 − �j large enough and minj (

√
�j + αj ) > maxj (−

√
�j + αj ), the

straight line λσ
1 (k̄1) never intersects with the hyperbolas λσ

j (k̄1) so that small perturbations
coming from small nonzero βjl-values (in a physical terminology these perturbations shift
the zero-width resonances from the real-energy axis to the complex plane) do not change
the monotonous behavior of λσ

1 (k̄1) and, hence, do not bring additional roots to the equation
λσ

1 (k̄1) = 0.
Thus, we see that the minimal value of virtual states with the absence of bound states

is equal to all possible sign combinations of σ which is nvmin = ∑
σ 1 = 2N−1. Hence, the

maximal possible number of resonances is obtained by subtracting this number from the total
number of solutions, i.e.

2nr,max = N2N−1 − 2N−1 = (N − 1)2N−1. (34)

6. Weak coupling approximation

For the number of channels N > 2 there is no way to get analytical solutions of system (14),
(15), but if the coupling parameters βij are small enough assuming analyticity of the roots of
the Jost-matrix determinant as functions of βij a perturbation technique may be developed. In
this section, we demonstrate this possibility by obtaining first-order corrections to unperturbed
values of the roots of the Jost-matrix determinant corresponding to βij = 0.

For the zero coupling, the matrix U0 becomes diagonal U0 = diag(α1, α2, . . . , αN) and
system (11), (3) reduces to

(α1 − ik0,1)(α2 − ik0,2) · · · (αN − ik0,N ) = 0, (35)

k2
0,j − k2

0,1 + �j = 0, j = 2, . . . , N, (36)

9
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where the additional subscript 0 corresponds to the uncoupled case. Its solutions have the
form

k
(1,σ )
0,1 = −iα1, k

(1,σ )
0,m = σm

√
−α2

1 − �m, m �= 1,

k
(2,σ )
0,2 = −iα2, k

(2,σ )
0,m = σm

√
−α2

2 + �2 − �m, m �= 2,
(37)

. . .

k
(N,σ)
0,N = −iαN, k

(N,σ)
0,m = σm

√
−α2

N + �N − �m, m �= N,

where m = 1, . . . , N . Let us explicitly indicate the meaning of subscripts and superscripts
in (37): the second subscript m in k

(j,σ )

0,m corresponds to the channel, the first superscript j

indicates a row number in (37) and σ indicates the one of all 2N−1 combinations of signs. Thus,
we see once again that the total number of solutions of the system is N2N−1 and it does not
depend on whether or not the coupling is absent. Note that every energy level Ej = −α2

j + �j

corresponding to a row in (37) is 2N−1 fold degenerate. Below we show that under a small
coupling every degenerate level Ej splits by 2N−1 sub-levels and we will find approximate
values of the splitting. But the unperturbed j th momentum corresponding to this level simply
equals k

(j,σ )

0,j = −iαj . Therefore, instead of our previous convention to express all quantities
in terms of k1, it is convenient here to express corrections to the j th momentum produced by a
perturbation in terms of the unperturbed j th momentum k̄

(j,σ )

0,j . This is always possible due to
the fact that all momenta have equal rights. But now we have to change our sign conventions
introduced in section 4 where the first momentum k̄1 entered in the string σ always with the
positive sign (σ1 = +). Now we have j th momentum k̄j ∈ (−∞,∞) and σj = + in string σ .

From (37), we learn that no coupling implies no finite-width resonances, but as we discuss
below the zeros lying above the first threshold may be associated with zero-width resonances
which acquire a nonzero width under a small coupling.

From the first row of (37), we conclude that the corresponding 2N−1 zeros with
E1 = −α2

1 are always below the first threshold (bound or virtual states). The energy
En = −α2

n + �n, n = 2, . . . , N , may be positive with respect to the first threshold and
just these (N − 1)2N−1 zeros are associated with the zero-width resonances. According to our
convention, a resonance corresponds to a pair of complex zeros. Here we can easily compute
the number of the zero-width resonances, nzwr, which is nzwr = (N − 1)2N−2 which agrees
with the maximal number of possible resonances obtained in the previous section.

The unperturbed Bσ matrix we denote by Bσ
0 is diagonal,

Bσ
0 = diag(α1 + σ1k̄1, α2 + σ2k̄2, . . . , αN + σN k̄N), (38)

and its eigenvalues λσ
0,j coincide with its diagonal entries,

λσ
0,j (k̄j ) = αj + k̄j , λσ

0,l(k̄j ) = αl + σl

√
k̄2
j + �l − �j, (39)

l = 1, . . . , N, l �= j. (40)

For simplicity, we assume all the coupling parameters βij proportional to the same small
parameter β so that the perturbed Bσ matrix reads

Bσ = Bσ
0 + βB, B = ‖bjl‖, bjj = 0, j = 1, . . . , N. (41)

Now, as it was mentioned above assuming analyticity of the eigenvalues of this matrix as
functions of β we can develop them in a Taylor series with respect to β,

λ̃σ
j = λσ

0,j + λσ
1,j + λσ

2,j + · · · , (42)

10
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where the first subscript number is just the power of β. First, we note that the perturbation B
has zero diagonal entries which results in λσ

1,j = 0. To get the second-order correction, we
are using the usual Rayleigh–Schrödinger perturbation approach which leads to

λσ
2,j (k̄j ) = β2

N∑
l=1,l �=j

b2
j l

λσ
0,j (k̄j ) − λσ

0,l(k̄j )
. (43)

In what follows, we also assume that we can neglect the higher-order corrections to the
eigenvalues.

Actually, our aim is to find corrections to the unperturbed degenerate j th Jost-matrix
determinant zero given in (37). Assuming the Taylor series expansions for this root over the
small parameter β indicating it now explicitly

k̄j = k̄
(j,σ )

0,j + βc1 + β2c2 + · · · (44)

we find the coefficients c1 and c2 from the equation

λ̃σ
j (k̄j ) = λσ

0,j (k̄j ) + λσ
2,j (k̄j ) = 0. (45)

For that we develop λ̃σ
j (k̄j ) in a Taylor series in β parameter considering its β dependence as

given through k̄j and (44). Equation (43) contains the factor β2, therefore in its denominator
we simply put k̄

j,σ

0,j instead of k̄j . The k̄j -dependence of the term λσ
0,j (k̄j ) is given by (39) and

its β-dependence is obtained via (44). Thus, the left-hand side of equation (45) is presented
as a series over the powers of β where every coefficient should vanish. This leads to c1 = 0
and

c2 =
N∑

l=1,l �=j

b2
j l

αl + σl

√
α2

j + �l − �j

. (46)

Finally, up to the second order in β, we obtain the roots of system (37):

k
(1,σ )
1 = −iα1 + i

N∑
l=2

β2b2
1l

αl + σl

√
α2

1 + �l

, k(1,σ )
m = σm

√(
k

(1,σ )
1

)2 − �m,

k
(2,σ )
2 = −iα2 + i

N∑
l=1,l �=2

β2b2
2l

αl + σl

√
α2

2 + �l − �2

, k(2,σ )
m = σm

√(
k

(2,σ )
2

)2
+ �2 − �m,

. . .

k
(N,σ)
N = −iαN + i

N−1∑
l=1

β2b2
Nl

αl + σl

√
α2

N + �l − �N

, k(N,σ)
m = σm

√(
k

(N,σ)
N

)2
+ �N − �m.

(47)

Here each row is obtained by applying equations (43), (44), (45) and (46) for j = 1, . . . , N ,
respectively, and m = 1, . . . , N,m �= j for each j . The square roots in the last column of
(47) should be expanded in the Taylor series up to β2.

From here it is easily seen that, when α2
m < �m, purely imaginary unperturbed zeros

km = −iαm move from the axes to the complex plane due to the real part of corrections. For

instance, for k2, the real part reads ±β2
√

�2 − α2
2

/(
α2

1 − α2
2 + �2

)
. We thus confirmed the

previous statement that zero-width resonances acquire nonzero widths.

7. Zeros of the Jost-matrix determinant for N = 2

The particular case of two coupled channels is important both from practical and theoretical
point of view. Let us recall the following inequalities for the number of bound/virtual states

11
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and resonances obtained in sections 3, 4 and 5: 0 � nb � 2, 0 � nr � 1 and 0 � nv � 4. The
same inequalities are obtained for N = 2 in [10, 11] from another approach. The two-channel
problem is the only one where one is able to get analytic expressions for the Jost-determinant
roots, i.e. to solve the direct problem consisting in finding the positions of the bound/virtual
states and resonances. This possibility is based on the fact that the roots of the algebraic
equation of fourth order, (N2N−1)|N=2 = 4, may be expressed in radicals. Thus we obtain
zeros as the functions of parameters defining the potential. One may be interested in solving
the inverse problem: to express parameters of the potential from the knowledge about positions
of the zeros of the Jost-matrix determinant. In principle, one may try to inverse radicals, but
we propose a more elegant way below.

To simplify the notations, we choose in this case �2 ≡ � �= 0. The potential, which is
known as the Cox potential [8], depends on three parameters appearing in the matrix

U0 =
(

α1 β

β α2

)
, (48)

and on the factorization energy E which is upper bounded. The Jost-matrix determinant reads

f (k1, k2) ≡ det F(k1, k2) = (k1 + iα1)(k2 + ia2) + β2

(k1 + iκ1)(k2 + iκ2)
. (49)

The system of equations (14), (15) in this case takes the simplest form

k2
1 − k2

2 = �, (50)

(k1 + iα1)(k2 + iα2) + β2 = 0 (51)

and can be reduced to a fourth-order algebraic equation with respect to k1

k4
1 + ia1k

3
1 + a2k

2
1 + ia3k1 + a4 = 0. (52)

The coefficients ai, i = 1, . . . , 4, are given explicitly in [10, equations (33a)–(33d)]. The
momentum k2 can be found from

k2(ik1 − α1) = α2(k1 + iα1) − iβ2, (53)

which is a direct implication of (51). Equations (52) and (53) are the particular case of system
(19), (18), . . . , (16) for N = 2 in accordance with our general discussion in section 2.

Let us assume we have found two of the roots of system (50), (51) we denote
(
k

(1)
1 , k

(1)
2

)
and

(
k

(2)
1 , k

(2)
2

)
, which clearly are the functions of parameters α1 and α2. Their dependence on

the parameters β and � is not important for the moment, since both β and � assumed to be
fixed. Being put back to (51), the equation reduces twice to identity for any values of α1 and
α2, which we write as

(
k

(1)
1 + iα1

)(
k

(1)
2 + iα2

)
+ β2 = 0, (54)

(
k

(2)
1 + iα1

)(
k

(2)
2 + iα2

)
+ β2 = 0. (55)

The reason why we replaced the identity sign by the equality sign is that these equations may
be considered as an implicitly written inverted dependence of α1,2 on the set of parameters
k

(1,2)
1,2 . We may thus fix arbitrary values for k

(1,2)
1,2 and find from (54), (55) α1 and α2 in terms

of k
(1,2)
1,2 which is a much easier task than finding an explicit dependence of k

(1,2)
1,2 on α1 and

α2. For that we have to solve, e.g. for α1, the following second-order equation:

α2
1 − α1i

(
k

(1)
1 + k

(2)
1

) − k
(1)
1 k

(2)
1 + β2 R1

R2
= 0, (56)

12
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with R1 = k
(2)
1 − k

(1)
1 and R2 = k

(2)
2 − k

(1)
2 which easily follows from (54) and (55). From

here we find

α1 = 1
2

[
i
(
k

(1)
1 + k

(2)
1

) ±
√

−R2
1 − 4β2R1/R2

]
, (57)

α2 = 1
2

[
i
(
k

(1)
2 + k

(2)
2

) ∓
√

−R2
2 − 4β2R2/R1

]
. (58)

The upper (lower) sign in (58) corresponds to the upper (lower) sign in (57). The values of
k

(1,2)
1 and k

(1,2)
2 should be chosen so as to warranty the reality of parameters α1,2.

Once the two roots are fixed, (52) reduces to a second-order algebraic equation
Q2(k1) = 0 for the two other roots k

(3)
1 and k

(4)
1 , thus providing an implicit but

rather simple mapping between the roots of system (50), (51) and the set of parameters
(α1, α2, β). The polynomial Q2(k1) is the ratio of the polynomial appearing in (52) and
P2(k1) = k2

1 − k1
(
k

(2)
1 + k

(1)
1

)
+ k

(2)
1 k

(1)
1 , i.e.,

k4
1 + ia1k

3
1 + a2k

2
1 + ia3k1 + a4 = P2(k1)Q2(k1).

From here we find, with the explicit expression for coefficients ai, i = 1, . . . , 4 [10],

Q2(k1) = (k1 + iα1)
2 + k1

(
k

(2)
1 + k

(1)
1

)
+

(
2iα1 + k

(2)
1 + k

(1)
1

)(
k

(2)
1 + k

(1)
1

)
+ α2

2 − � − k
(1)
1 k

(2)
1

and, hence,

k
(3)
1 = 1

2

[ ∓ i
√

−R2
1 − 4β2R1/R2 +

√
D1

]
, (59)

k
(4)
1 = 1

2

[ ∓ i
√

−R2
1 − 4β2R1/R2 −

√
D1

]
, (60)

where D1 = R2
1 + 4β2 R2

R1
+ 4k

(2)
1 k

(1)
1 . The sign before the first square root in (59) and (60)

should be chosen in accordance with the signs in (57) and (58).
To find k

(3,4)
2 we do not need to solve any equation. We simply note that the equation

det F(k1, k2) = 0 is invariant under the transformation k1 ↔ k2, α1 ↔ α2,� ↔ −�. This
means that being transformed according to these rules equations (59) and (60) give us the k2

values:

k
(3)
2 = 1

2

[ ∓ i
√

−R2
2 − 4β2R2/R1 −

√
D2

]
, (61)

k
(4)
2 = 1

2

[ ∓ i
√

−R2
2 − 4β2R2/R1 +

√
D2

]
, (62)

where D2 = R2
2 + 4β2 R1

R2
+ 4k

(2)
2 k

(1)
2 .

Two initial zeros
(
k

(1)
1 , k

(1)
2

)
,
(
k

(2)
1 , k

(2)
2

)
and the threshold difference � are assumed to be

known from the experiment. For instance, these zeros may correspond to a visible Feshbach
resonance or two bound states. The possible cases for initial data are summarized in table 1.
The first row of table 1 corresponds to the case where the position of the resonance is known
(see section 7.1). The second row corresponds to the case where the positions of both the
resonance and one bound state are known, which allows one to fix the maximal number of
parameters. The third row corresponds to the case where the positions of two bound states are
known (see section 7.2). The last row corresponds to the special case when only one zero may
be fixed from experimental data. The free parameters in table 1 allow either for isospectral
deformations of the potential or for fits of additional experimental data as, e.g., scattering
lengths (see, e.g. [10, 11]). The restriction on the factorization energy is deduced from the
regularity condition of potential (10). The restriction on the coupling parameter β is explained

13
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Table 1. Possible mappings between some experimental data and the Cox potential parameters.

Experimental Fixed Free
data parameters parameters Restrictions

�, Er , Ei α1, α2 κ1, β β � √−krpr

�, Eb = −λ2
b, Er , Ei α1, α2, β κ1 κ1 > λb

�, E1,2 = −λ2
1,2 α1, α2 κ1, β κ1 > λ2 > λ1

�, Eb = −λ2
b α2 κ1, β, α1 κ1 > λb

below (see (67)). Let us now consider the examples corresponding to the first three rows of
table 1.

7.1. One resonance

A resonance corresponds to a pair of complex roots k
(1)
1 and k

(2)
1 of the Jost-matrix

determinant such that ik(1)
1 and ik(2)

1 are mutually complex conjugates. Therefore, we assume
equations (50) and (51) to have two complex roots. Let us define their first-channel components
as

k
(1)
1 = kr + iki, k

(2)
1 = −kr + iki, ki ∈ R, kr ∈ R, kr > 0, (63)

and write the corresponding energies,
(
k

(1,2)
1

)2
, as Er ± iEi , where we also assume Ei > 0

(which means that the upper sign corresponds to k
(1)
1 or k

(2)
1 , depending on the sign of ki).

We would like to choose as parameters the threshold difference �, as well as the real and
imaginary parts of the resonance complex energy, Er,Ei . As exemplified below, these can
correspond to physical parameters of a visible resonance in some (but not all) cases. In terms
of these parameters, kr and ki are expressed as

kr = Ei√
2

[√
E2

r + E2
i − Er

]−1/2
, ki = ± 1√

2

[√
E2

r + E2
i − Er

]1/2
. (64)

In the second channel, the roots

k
(1)
2 = pr + ipi, k

(2)
2 = −pr + ipi

can be found from the threshold condition yielding

pr = − 1√
2

[√
E2

i + (Er − �)2 + Er − �
]1/2

, (65)

pi = ∓ Ei√
2

[√
E2

i + (Er − �)2 + Er − �
]−1/2

. (66)

The upper (lower) sign in (64) corresponds to the upper (lower) sign in (66), which means
that, for a given zero, the signs of ki and pi are opposite. Moreover, equations (64) and (65)
show that, for a given zero, the signs of kr and pr are also opposite. This implies that, for the
Cox potential, the complex resonance zeros (or scattering-matrix poles) are always in opposite
quadrants in the complex k1 and k2 planes. This has important consequences for physical
applications: for a resonance to be visible, one of the corresponding zeros has to lie close
to the physical positive-energy region, i.e., close to the real-positive k1 axis and close to the
region made of the real-positive k2 axis and of the positive-imaginary k2 interval: [0, i

√
�].

Consequently, the only possibility for a visible resonance with the Cox potential is that of a
Feshbach resonance, only visible in the channel with lowest threshold, with an energy lying

14



J. Phys. A: Math. Theor. 41 (2008) 175209 A M Pupasov et al

(a) (b) (c)

Figure 3. The Cox potential without bound state and with one visible resonance of energy Er = 0.4
and width � = 0.02, for � = 1 and β = 0.1 (first row, solid lines for V11 and V22 + �, dashed line
for V12), with the corresponding partial cross section (second row) and phase shifts (third row) for
(a) κ1 = 0.5, (b) κ1 = 0.7 and (c) κ1 = 1.

below the threshold �. At higher resonance energies, the corresponding zero is either close to
the k1-plane physical region (and far from the k2-plane one) or close to the k2-plane physical
region (and far from the k1-plane one); it cannot be close to both physical regions at the
same time, hence it cannot have a visible impact on the coupled scattering matrix. Here, we
illustrate the case of a visible resonance, which is the most interesting from the physical point
of view. It corresponds to the lower signs in (64) and (66), with a resonance energy Er such
that 0 < Er < �, and a resonance width � = 2Ei such that Ei < Er .

Note that for nonzero values of the parameters kr and pr (which have opposite signs),
the coupling parameter β cannot be infinitesimal: because α1 and α2 have to be real, β is
restricted to satisfy the inequality

β �
√

−krpr . (67)

To get a potential with one bound state at energy −λ2
b, we choose the lower signs in (57),

(58). We then get for k
(3)
1 (β) an expression similar to (59), (60), from which the value of β

can be found by solving the bi-squared equation k
(3)
1 (β) = iλb.

Let us now choose explicit parameters. First, we put � = 1. To get a visible resonance,
we put Er = 0.4, Ei = 0.01 (which corresponds to a resonance width � = 0.02), and
β = 0.1. Using (57), (63) and (64), one finds α1 = 0.769 38 and α2 = −0.766 853 (we
choose the upper signs (57), (58)). The factorization energy, E , is not constrained in this
case: it just has to be negative. The Cox potential with one resonance and two virtual states
Ev1 = −0.560 473, Ev2 = −0.599 544 is shown in the first row of figure 3.
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(a) (b)

Figure 4. The Cox potential (solid lines for V11 and V22 + �, dashed line for V12) with two bound
states at energies E1 = −0.01 and E2 = −2.25, for � = 1, β = 0.1 and κ1 = 1.51. The left
(right) graphic corresponds to the upper (lower) signs in (57) and (58).

The diagonal elements of the potentials, V11 and V22 + �, are plotted with solid lines,
while V12 is plotted with dashed lines. The parameter κ1 is responsible for the isospectral
deformation of the potential which results in the behavior of the phase shifts. The second row
of figure 3 shows the corresponding partial cross sections, where the resonance behavior is
clearly seen, as well as the evolution of the low-energy cross section, which is related to the
scattering length. The last row of figure 3 shows the corresponding phase shifts for the open
channel, where a typical Breit–Wigner behavior (see, e.g. [1]) is seen for the resonance, as well
as the evolution of the zero-energy phase-shift slope, which is also related to the scattering
length.

7.2. Two bound states

Let us now construct a Cox potential with two bound states, and hence no resonance [10]. We
choose k

(1)
1 = 0.1i and k

(2)
1 = 1.5i for these bound states and, as in the previous example,

we put � = 1 and β = 0.1. We thus have k
(1)
2 = √

1.01i and k
(2)
2 = √

3.25i, which defines
R2 in (57), (58). Choosing the upper signs in these equations, we find α1 = −0.112 649 and
α2 = −1.795 57, while for the lower signs, we get α1 = −1.487 35 and α2 = −1.0122. The
corresponding Cox potentials are shown in figure 4.

8. Conclusion

A careful study of spectral properties of non-conservative multichannel SUSY partners of the
zero potential is given. Our treatment is based on the analysis of the Jost-matrix determinant
zeros. Generalizing our previous results for the two-channel case [10, 11], we have shown that
the zeros of the Jost-matrix determinant are the roots of an N2N−1 th-order algebraic equation.
The number of bound states nb is restricted by the number of channels, 0 � nb � N . The
upper bound for the number of resonances is (N − 1)2N−2. The generalization is based on the
analysis of the behavior of the Jost-matrix eigenvalues.

In general, an algebraic equation of an order higher than 4 has no solutions in radicals.
As a consequence, there are no exact analytic solutions of a spectral problem for a non-
conservatively SUSY-transformed Hamiltonian with N > 2. Therefore, the problem of finding
the approximate solutions appears to be actual. Based on the usual Rayleigh–Schrödinger
perturbation theory for the eigenvalues of the Jost matrix, we develop an approximate method
for finding the zeros of the Jost-matrix determinant in the case of a weak coupling between
channels.
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An analytical study of the Jost-determinant zeros is carried out for the two-channel case
which implies an algebraic equation of the fourth order. A suitable factorization of the fourth-
order polynomial allows us to develop a procedure which solves the inverse spectral problem
for this case. The effectiveness of the procedure is illustrated by two examples: a potential
with one resonance and a potential with two bound states.
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